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1 Introduction

The increasing adoption of electric vehicles (EVs) has been a significant de-

velopment in the push toward sustainable transportation. However, the rapid

rise in EV ownership has placed considerable strain on the existing charging

infrastructure, highlighting the urgent need for effective solutions to optimize

the utilization of charging stations. This shift introduces new challenges: the

limited availability of charging points, increased waiting times, and fluctuat-

ing energy demands at charging stations. Additionally, the advent of dynamic

pricing, where the cost of charging increases with demand, complicates the

decision-making process for users, who must balance cost, charging speed,

and station availability when selecting a location and duration for charging.

As the number of EVs continues to grow, it becomes critical to implement

intelligent systems that optimize the charging process in real-time, enhanc-

ing user satisfaction while reducing congestion and improving infrastructure

efficiency.

The management of EV charging infrastructure has emerged as a complex

problem that demands the integration of advanced technologies such as ma-

chine learning, optimization algorithms, and real-time data processing. A

fundamental aspect of managing this infrastructure is demand forecasting,

where the goal is to predict future occupancy levels at charging stations to

inform decision-making. Accurate demand predictions are crucial, as they
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allow for proactive management of resources, minimizing long wait times

and optimizing charging durations. Furthermore, real-time personalized rec-

ommendations for EV users are necessary to guide them toward optimal

charging decisions, ensuring cost-effectiveness and time efficiency while con-

sidering user-specific needs (e.g., battery levels, preferred charging duration,

and location).

In the context of these challenges, this project seeks to develop an integrated

framework that combines predictive modeling with optimization to provide

EV users with actionable insights for real-time decision-making. The Adap-

tive Charging Network (ACN) dataset from the California Institute of Tech-

nology (Caltech), which includes extensive charging session logs, timestamps,

energy deliveries, and site-specific identifiers, serves as the main source of

data for this project. By utilizing this dataset, we aim to build a forecast-

ing model based on Extreme Gradient Boosting (XGBoost) to predict future

charger occupancy at key stations and then feed these predictions into an op-

timization model that recommends personalized charging strategies. These

strategies will take into account dynamic pricing, the capacity of each station,

predicted demand, and user-specific constraints, such as remaining battery

charge and geographic location.

This work builds upon existing research in the areas of demand forecasting

and optimization but goes further by integrating these methods into a holis-

tic real-time recommender system that adapts to the dynamic nature of EV
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charging environments. Although previous studies have examined various

aspects of EV charging, such as station selection and cost optimization, few

have effectively incorporated dynamic pricing models into real-time optimiza-

tion for personalized decision-making. Furthermore, while demand prediction

using machine learning techniques like XGBoost has shown promise in other

domains, its application in EV charging infrastructure management has not

been explored to the same extent.

The primary goal of this research is to contribute to the scalable manage-

ment of EV charging infrastructure, providing both EV users and charging

station operators with tools to enhance the efficiency of the charging pro-

cess. Specifically, we aim to reduce user costs, wait times, and overcrowding

at stations, improving the overall user experience and contributing to the

sustainability of electric transportation. In doing so, this work lays the foun-

dation for future advancements in smart charging systems, which are critical

to the long-term success of EV adoption and the broader EV ecosystem.
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2 Dataset

2.1 Dataset Overview

The ACN dataset 1, as detailed by Lee, Li, and Low 2019, offers compre-

hensive information on EV charging sessions, enabling studies into efficient

EV charging algorithms and infrastructure optimization. Based on a deploy-

ment of over 100 charging stations at 3 sites around the Caltech campus,

the ACN system serves an average of 65 EVs per day under a shared power

constraint of 300 kWh. Between 2017 and 2019, it supported the delivery

of energy sufficient for 2.3 million miles of charging. For this project, we

only use data from two sites; viz., Caltech, which has 53 Electric Vehicle

Supply Equipment (EVSEs) and JPL, which has 52 EVSEs. These datasets

contain metadata and nested structures, capturing various attributes rele-

vant to the study. The JSON files were normalized and transformed into

pandas DataFrames for structured analysis. The relevant fields included in

the dataset are presented in Table 1.

2.2 Timeframe and Records

We utilized three months of data spanning January to March 2019. The first

two months were designated for training, and the final month was used for

1https://ev.caltech.edu/dataset
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Field Description
id Unique identifier of the session record
connectionTime Time when the EV plugged in
disconnectTime Time when the EV plugged out
doneChargingTime Time when of the last non-zero current draw recorded
sessionID Unique identifier for the session
siteID Unique identifier for the site
stationID Unique identifier of the EVSE
kWhRequested Energy requested by the user in kWh
kWhDelivered Amount of energy delivered during the session
timezone Timezone of the site. Based on pytz format.

Table 1: Field Descriptions for the ACN Dataset

testing. The JPL dataset contains 4,117 session records, while the Caltech

dataset comprises 2,907 session records. Missing values accounted for less

than 0.5% of the data and were removed to maintain data integrity.

2.3 Charging Duration Analysis

The average charging duration at JPL was calculated to be 7.34 hours,

whereas the corresponding average at Caltech was 5.83 hours. Figure 1

illustrates a combined histogram showing the distribution of charging ses-

sion durations for both locations. The histogram reveals that JPL sessions

generally tend to be longer, possibly due to differences in user behavior or

station utilization policies.
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Figure 1: Distribution of Charging Session Durations for JPL and Caltech

2.4 Feature Engineering

Several new features were derived to enhance the predictive capacity of the

dataset:

• Day of the Week, Day of the Month, Month of the Year:

Derived from the connection and disconnection timestamps to capture

temporal patterns.

• Charging Duration: Computed as the difference between connection

and disconnection times.
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2.5 Data Aggregation

The raw data was aggregated into half-hourly intervals to facilitate temporal

analysis and model compatibility. This aggregation involved summarizing

session counts and durations within each time block.

2.6 Charging Session Counts per Station

We analyzed the number of charging sessions at each station within JPL

and Caltech, revealing distinct usage patterns. Figures 2 and 3 display the

distribution of session counts across approximately 50 stations at each loca-

tion. At JPL, the distribution of charging sessions is nearly uniform across

the stations, suggesting that all stations are utilized at similar rates. This

uniformity may be attributed to high demand evenly distributed across the

available infrastructure. In contrast, Caltech exhibits significant variability

in station usage, with certain stations experiencing higher activity. This dis-

parity could result from user preferences, station proximity to key locations,

or varying accessibility.
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Figure 2: Charging Session Distribution Across Stations at JPL

Figure 3: Charging Session Distribution Across Stations at Caltech
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3 Prediction Model

In this section, we will introduce the methodology of the XGBoost model and

use it as our prediction module. The feature selection is discussed in Section

4.2, and a Shapley value-based method is deployed to rank the feature’s

importance. The experiment results are analyzed in Section 4.3. Section 4.4

summarizes the investigation of the prediction model.

3.1 XGBoost Model

After confirming the prediction task, we need to find an efficient model to

map the inputs to future charging demand. We can formulate the problem

into a supervised learning task and adopt the popular machine learning algo-

rithm extreme gradient boosting(XGBoost) as our solution. XGBoost stands

out in supervised learning due to its superior performance and accuracy,

stemming from its robust gradient-boosting framework and regularization

features that combat overfitting. It offers remarkable efficiency and scalabil-

ity, handling large datasets with speed across multiple processing units. Its

flexibility in managing different data types, handling missing values, and al-

lowing for customized objective functions makes it versatile for a wide range

of applications. Moreover, XGBoost’s built-in model interpretation tools

aid in understanding feature influences, making it a preferred choice among

data scientists for achieving top-notch predictive models in competitions and
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real-world tasks.

Similar to other gradient-boosting algorithms, XGBoost relies on the deci-

sion tree ensemble structure. A tree ensemble model uses multiple decision

trees to improve accuracy, as a single tree typically falls short. Each tree

contributes to the final prediction by assigning scores to its leaves, which

are then combined to make a more reliable prediction. With K number of

decision trees fk to predict the outcome ŷi from instance xi, the model can

be written as,where F is a set of all possible trees.

ŷi =
K∑
k=1

fk(xi), fk ∈ F (1)

Then we can train the model by properly defining the loss function and

optimizing it. The optimization object J can be set by taking both loss L

from ground truth yi and regularization ω:

J =
n∑

i=1

L(yi, ŷ
(K)
i ) +

K∑
i=1

ω(fi) (2)

Since it is intractable to learn all the trees at once, we use an additive strategy

by adding a new tree at each time step t:

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi) (3)
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The new tree can be selected by optimizing the object defined below.

J =
n∑

i=1

[
L(yi, ŷ

(t−1)
i ) + ft(xi)

]
+ ω(ft) + constant (4)

For general loss functions, we can take the Taylor expansion of the original

equation and remove the constant parts

J =
n∑

i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ ω(ft) (5)

where gi,hi and ω(ft) are defined below, T is the number of leaves and ω is

the score on each leaf, γ, λ are control factors:

gi =
∂L(yi, ŷ

(t−1)
i )

∂ŷ
(t−1)
i

(6)

hi =
∂2L(yi, ŷ

(t−1)
i )

∂(ŷ
(t−1)
i )2

(7)

ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (8)

3.2 Feature Selection

The feature selection is initially based on intuition, and we developed four sets

of features. Their performance is evaluated based on rooted mean squared

error(RMSE), and the models are also examined by their feature importance

ranking calculated by the Shapley-Value-based method. The feature selection
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for each set is shown below:

ID Freq. History
Hour of
Day

Day of
Week

Day of
Month

Month of
Year

1 60 min 12 Ë Ë Ë Ë
2 30 min 12 Ë Ë Ë Ë
3 30 min 24 Ë Ë Ë é
4 30 min 24 Ë Ë Ë é

Table 2: Feature Selection

The Freq. means the resolution of the date and the History represent the

number of previous demands we use for the next time-unit prediction. The

swoosh in the categorical feature means it is selected, and the crossing means

it is not.

To explain and gain more insights into the model, we will use Shapley Value

based method to rank the feature importance after getting the fitted model.

Shapley Value-based approach formulates the prediction model as a coali-

tion game and features value as players. It’s normally used for analyzing a

single instance. It draws the interpretation from the payout of each feature,

namely Shapley values. The overall Shapley value of an instance is defined

as the difference between the prediction and average predictions of the whole

dataset. The estimation process for the Shapley value of a feature of interest

is demonstrated in Algorithm 1

After getting the Shapley values of each feature in every instance, we can use

them to evaluate the feature’s importance of the prediction model and the
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Algorithm 1: Shapley Value Estimation

Input: Dataset of interest X; XGBoost model f̂ ; Instance of
interest x; Feature indexj; Number of iterations M ; Number
of features m;

Output: Shapley value of the j-th feature ϕj(x)

1 for i ∈ {1, . . . ,M} do
2 Draw random instance z from X;

Permutate the instance by random order:
xo = (x(1), . . . , x(j), . . . , x(m));
zo = (z(1), . . . , z(j), . . . , z(m));
Construct two new instances:
x+j = (x(1), . . . , x(j−1), x(j), z(j+1) . . . , , z(m));
x−j = (x(1), . . . , x(j−1), z(j), z(j+1) . . . , , z(m));

ϕi
j = f̂(x+j)− f̂(x−j);

3 ϕj(x) =
1
M

∑M
m=1 ϕ

m
j

particle dependence on the feature of interest.

The idea behind feature importance evaluation is simple: Features with large

absolute Shapley values are important. Since we want the global importance

of the featureIj, we average the absolute Shapley values per feature across

the whole dataset:

Ij =
1

n

n∑
i=1

∣∣∣ϕ(i)
j

∣∣∣ (9)

Then, we can sort the features by decreasing importance and plot them,

which provides a clear way to understand which feature plays a vital role in

the prediction, in other words, influences the driver’s decision most.
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3.3 Prediction Performance Comparison

In this section, we will conduct three pairs of comparisons. The first one is the

prediction comparison between the OLC regression model and the XGBoost

model using feature set 1. Then, we conducted a comparison among the

different sets of features to find the most efficient feature set. Lastly, we did

a generalization test on the best model we trained from last experiment. The

test is conducted using another data source.

3.3.1 Comparison Between OLC Regression and XGBoost

In this part, we will compare the performance of the regression model and

XGBoost model using RMSE on the test set. The data we use to compare

prediction accuracy is the hourly charging occupancy from Jan 1, 2019, to

March 30, 2019, at the JPL charging site. The data is split into the training

set and the test set by a ratio of 0.8:0.2. The feature we input to the model is

feature set 1, and categorical features are treated as dummy variables. The

converged learning curve of the XGBoost Model is shown below:
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Figure 4: Converged Learning Curve for XGBoost Model

The scatter plots of both models are shown below; the caption of the plot is

their RMSE value.

(a) Regression Model: 1.82 (b) XGBoost Model: 1.29

Figure 5: Regression vs XGBoost

As we can see from the plots, the points are distributed evenly alongside

the 45-degree slopes, and it achieves better accuracy. The t-statistics for the

regression model is shown below:
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Feature Name t-statistics Feature Name t-statistics
const 1.698 lag 1 14.857
lag 2 -5.908 lag 3 -2.184
lag 4 -0.643 lag 5 0.154
lag 6 -2.296 lag 7 0.115
lag 8 0.253 lag 9 -0.191
lag 10 -0.656 lag 11 -0.643
lag 12 -0.988 hour of day 1 5.296

hour of day 2 -0.531 hour of day 3 -0.677
hour of day 4 -1.727 hour of day 5 -1.653
hour of day 6 -1.769 hour of day 7 -1.847
hour of day 8 -1.882 hour of day 9 -1.926
hour of day 10 -1.852 hour of day 11 -1.810
hour of day 12 -0.988 hour of day 13 5.296
hour of day 14 14.516 hour of day 15 10.858
hour of day 16 -2.921 hour of day 17 -2.684
hour of day 18 0.430 hour of day 19 -0.697
hour of day 20 0.711 hour of day 21 0.593
hour of day 22 0.186 hour of day 23 0.332
hour of day 24 0.581 day of week 1 1.076
day of week 2 1.424 day of week 3 -0.274
day of week 4 0.466 day of month 5 0.131
day of month 6 0.217 day of month 7 1.281
day of month 8 0.346 day of month 9 -0.094
day of month 10 1.392 day of month 11 0.315
day of month 12 -0.057 day of month 13 -0.123
day of month 14 -0.146 day of month 15 -0.005
day of month 16 0.022 day of month 17 -0.695
day of month 18 0.677 day of month 19 0.185
day of month 20 -0.910 day of month 21 1.189
day of month 22 -0.062 day of month 23 0.138
day of month 24 1.130 day of month 25 0.498
day of month 26 0.532 day of month 27 0.225
day of month 28 0.767 day of month 29 -0.041
day of month 30 0.952 day of month 31 0.306
month of year 2 0.387 month of year 3 0.387

Table 3: Regression T-statistics Check(bold for |t| > 2)
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For the regression model, all of the date-related features are trivial, and only

the history demand and hour-of-day are significant. The feature ranking for

the XGBoost model is shown below:

Figure 6: Importance Ranking for XGBoost Model

The XGBoost Model’s top three features are the demand in the previous
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hour, the hour of the day, and the day of the week. It considers more the

day-of-week features, which may reflect the different patterns on weekdays

and weekends.

3.3.2 Comparison among All Feature Sets

In this part, we compare the effectiveness and efficiency of the selected feature

set using RMSE features. The scatter plots of the four sets are shown below,

along with their RMSE values.

(a) Feature Set 1: 1.29 (b) Feature Set 2: 1.045

(c) Feature Set 3: 1.001 (d) Feature Set 4: 0.893

Figure 7: Feature Sets Comparison
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From the scatter plots and the RMSE values, we can conclude that the model

trained with previous 24-hour data and removing the month-of-year is the

most effective. The prediction error is less than 1 user per 30 minutes, which

is accurate enough for deployment and can be used as input for optimization

model. Also, in the following part, we will use it to make predictions on

Caltech charging site data and test its generalization ability.

3.3.3 Generalization Test

In this part, we will test the prediction accuracy of the trained model on a

different dataset. Previously, the model was trained on the data collected

at the JPL charging station. Now, it will be tested using the data collected

from Caltech charging site. The demand pattern is similar but not same. At

the same time, we also train a model directly using the Caltech data and

compare their performance. The scatter plots of these two models are shown

below:
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(a) JPL Model: 1.0544 (b) Caltech Model: 0.8361

Figure 8: Generalization

We can see that the Caltech model outperforms the JPL model greatly by

using the same features. The generalization of the model is poor. When we

look into the feature importance ranking of both models, we can see that

they value different features. For Caltech, it values hour-of-day since the

pattern of the demand in Caltech is more periodical but the JPL sites, the

data has higher causality in time series.
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(a) JPL Model (b) Caltech Model

Figure 9: Feature Importance Ranking Comparison

3.4 Summary

The XGBoost model is employed to predict EV charging demand due to its ef-

ficiency, scalability, and flexibility in handling large datasets and customized

objectives. Using a decision tree ensemble approach, it optimizes predictions

by iteratively adding trees and leveraging regularization to prevent overfit-

ting. Feature selection, based on rooted mean squared error (RMSE) and

a Shapley Value-based ranking method, identifies the most effective feature
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set: 24-hour historical demand without month-of-year features, achieving an

RMSE of 0.893. However, a generalization test on Caltech data reveals poor

transferability, as feature importance and demand patterns differ from the

original JPL dataset. Training a new model on Caltech data achieves su-

perior performance, highlighting the need for tailored models for different

datasets. The selected feature set and methodology are effective for deploy-

ment and can serve as an input to the optimization module to provide better

charging recommendations.
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4 EV Charging Station Recommendation Sys-

tem

The EV recommendation system provides suggestions to individual EV users

on where to charge and for how long to charge, based on the predicted de-

mand levels, as charging prices are determined by these levels at each station.

This suggestion system balances the overall cost of charging with the bene-

fits of charging. Therefore, we propose a mixed-integer programming (MIP)

formulation to offer each EV user an optimal recommendation plan that

specifies the location, time, and duration for charging.

4.1 Problem Statement

The recommendation system processes requests from EV users, detailing

their current location, current time tcurrent, current battery level SOCcurrent,

and the required electric volume SOCrequire. Within an acceptable driving

distance range, there exists a set of alternative EV charging stations, denoted

by I. The charging start time may allow delays after the request time to take

advantage of better prices, referring tstart > tcurrent. Furthermore, extending

the charging duration beyond the required SOCrequired is advantageous, as

longer charging times can reduce the frequency of future charging, thereby

lowering the fixed costs associated with charging.
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Figure 10: Introduction of the EV Charging Station Recommendation Sys-
tem

We define the charging station decision as a binary variable xi, i ∈ I, and the

charging start and end times as tstart and tend, respectively. We divide time

into intervals, forming a set T , and define the binary variable wt to indicate

whether the time interval t falls within the charging window, (tstart, tend).

4.1.1 Constraints

The driving distance cannot exceed the limitation imposed by the remaining

battery capacity, as expressed by the following constraint:

dixi ≤ δ SOCcurrent, ∀i ∈ I (10)
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where δ represents the coefficient that converts electric charge into driving

distance, and di denotes the distance to charging station i.

Equations 11 and 12 indicate that the charging state must remain within the

battery limit, SOC, while also satisfying the requirement for the required

power volume, SOCrequired. In this context, γ serves as the parameter used

for converting charging duration into battery volume.

γ(tend − tstart) ≤ SOC − SOCcurrent (11)

γ(tend − tstart) ≥ SOCrequire (12)

Equations 13 and 14 indicate whether the time interval wt falls within the

charging time window (tstart, tend). This determination is essential for calcu-

lating the price of charging during that specific time window.

tstart − bt ≤ M(1− wt) ∀t ∈ T (13)

bt − (tend − 1) ≤ Mwt ∀t ∈ T (14)

,where bt represents the start time of time interval t, and M denotes a big

number.
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4.1.2 Objective Function

The objective function represents the overall cost of charging and encom-

passes the following components:

• Driving cost from the current location to the charging station.

• Charging price during the designated time window.

• Penalty for late charging due to waiting for a better price.

• Negative benefit from charging more to reduce fixed costs.

The objective function can be formulated as follows:

obj =αdistance
∑
i∈I

dixi +
∑

i∈I,t∈T

pitxiwt (15)

+ αlate(tstart − tcurrent)− αfix[γ(tstart − tcurrent)− SOCrequire]

,where αdistance, αlate, and αfix are monetary parameters that quantify the

respective costs associated with each component of the objective function.
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4.1.3 Mathematical Formulation

The mixed-integer programming (MIP) formulation for the charging station

recommendation system is presented as follows.

Min αdistance
∑
i∈I

dixi +
∑

i∈I,t∈T

pitxiwt + αlate(tstart − tcurrent)

− αfix[γ(tstart − tcurrent)− SOCrequire]

s.t.

dixi ≤ δSOCcurrent ∀i ∈ I

γ(tend − tstart) ≤ SOC − SOCcurrent

γ(tend − tstart) ≥ SOCrequire

tstart − bt ≤ M(1− wt) ∀t ∈ T

bt − (tend − 1) ≤ Mwt ∀t ∈ T∑
i∈I

xi = 1

xi ∈ {0, 1} ∀i ∈ I

wt ∈ {0, 1} ∀t ∈ T

tstart, tend ≥ 0
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4.2 Case Study and Numerical Result Analysis

We conducted a small case study utilizing 10 alternative EV charging stations

over a 24-hour time frame to evaluate the effectiveness of the recommendation

system. Figure 11 illustrates the price rates for the ten EV charging stations

during this period. The distances to the charging stations are as follows:

[1.68, 1.57, 1.69, 1.10, 0.63, 1.06, 1.49, 2.16, 1.70, 2.37] miles.

Figure 11: EV Charging Station Price Rates over a 24-hour Period

The recommendation system receives a request at 12:00 AM, with a charging

duration requirement of 6 hours. The parameters used in this study are

summarized in Table 4.
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Table 4: Parameter Value for MIP Formulation
Parameter Value
γ 10

SOC 85
SOCcurrent 2
SOCrequire 60
tcurrent 12
δ 3
αdistance 2
αfix 2
αlate 2

Figure 12 illustrates the outcomes of the recommendation system, indicating

that charging begins at 4:00 PM at the fourth charging station, with a total

charging duration of 8 hours, which exceeds the required charging time by 2

hours.

Figure 12: Results of Recommendation System
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5 Conclusion

In this project, we developed a comprehensive framework combining demand

prediction and optimization to enhance electric vehicle (EV) charging rec-

ommendations. The study utilized the Adaptive Charging Network (ACN)

dataset, leveraging the exceptional time-series processing capabilities of the

XGBoost model for accurate demand forecasting. The final model demon-

strated significant improvements over traditional regression approaches.

Despite the model’s strong predictive capabilities, our analysis highlighted

challenges in generalization across different datasets, as evidenced by vary-

ing feature importance rankings and demand patterns between the JPL and

Caltech sites. These findings underscore the importance of tailored models

for distinct charging environments to ensure accuracy and effectiveness.

The optimization module complemented the predictive model by offering dy-

namic and personalized charging recommendations, integrating factors such

as dynamic pricing, battery states, and user constraints. Our case study

demonstrated the system’s ability to balance cost-effectiveness, charging ef-

ficiency, and user satisfaction, providing a viable solution to manage the

growing adoption of EVs.

This project serves as a foundational step toward developing smart and effi-

cient EV charging strategies that promote the advancement and widespread
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adoption of EVs. Future research could explore integrating real-time data

streams, enhancing model generalizability, and incorporating additional con-

straints like renewable energy availability. Addressing these aspects will pave

the way for more robust and sustainable EV ecosystems, making EVs even

more appealing to users.
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